Commentary

The case-control study

It is not uncommon to develop technology without a
full understanding of the underlying science. Cell
phones are manufactured daily even though nobody
knows whether they are made of elementary
particles, of vibrating strings, or of something else.
My computer is not floating in the air, and nobody
knows if gravitons are part of the explanation. If
something works then it works, and how someone
got it to work is of lesser importance for the user.

Not so in science. When a research method is
proposed—be it a new measurement or a new study
design—an explicit rationale is expected, because no
external standard can tell that a method is working—
that is, helping to discover the secrets of Nature. All
that can be done is to explain why some method
serves the purpose of science and leave room for a
healthy debate.™ To estimate an effect, for example,
we compare the frequency of the outcome between
two values of the exposure variable because that
comparison may tell us about the exposure effect. To
remove confounding bias, we condition on a
confounder because mathematical ideas tell us that
conditioning will block a confounding path.

The case-control design is a time-honored exception.
When that method showed up in science at the
beginning of the twentieth century,3 no one had a
solid explanation of why we may learn about cause-
and-effect from a case-control study, much less why
the exposure odds ratio estimates the exposure effect
on the outcome. On the contrary, common sense tells
us that a causal connection may be discovered by
comparing the distribution of the outcome variable
across the values of the causal variable, not by
comparing the distribution of the causal variable in
two strata of the outcome: “cases” and “controls”.

Historical explanations for the case-control design—
some of which are still echoed in textbooks and
courses—have been sketchy and weak. Take, for
example, the following reasoning which was offered
by the authors of one of the first case-control studies:

“We feel that any study of the habits of individuals
with cancer is of little value without a similar study of
individuals without cancer. To know that a large
percentage of patients with cancer have certain habits
is of little value for inference unless we know what
percentage of the community at large has the same
habit.” (Quoted in an article by Paneth et al®).

In some minds the authors of this text “provided a
rationale for the use of controls in words hard to
improve upon".3

Hard to improve upon?

First, the paragraph contains a contradiction. If we
also need to know the distribution of the same habit
in “the community at large” (second sentence), why
do we need “a similar study of individuals without
cancer” (first sentence)? The community at large
includes people with cancer too; it is not synonymous
with “individuals without cancer”. Second, the text
does not explain why it is helpful to study the habits
of individuals with cancer in the first place, rather
than study the occurrence of cancer in individuals
with different habits. Third, we don’t need to know
that the frequency of the exposure in cases is large;
only that it differs from the frequency in controls. As
usual, pioneering ideas courageously pave a road in
the dark, but they are similar to a first draft of a
manuscript—untidy and imprecise. Easy to improve
upon.

Many years later, we find three attempts to explain
the logic of the case-control design: The first offers no
explanation at all; the second explains the design as a
sample from a cohort; and the third is anchored in
the theorems of a causal diagram. | will name them,
respectively, the retrospective story, the cohort story,
and the diagram story.

The retrospective story

The retrospective story tells us that there are two
ways to estimate an effect: a prospective study,
where we follow exposed and unexposed into their
future, and a retrospective study where we select
people who already have the disease (cases) and
people who don’t (controls) and look back at their
past exposure. There is no explanation, however, of
why “looking back” is a method to learn about a
future effect.

Moreover, if “looking back” at past exposure is as
valid as “looking forward” at future disease, why are
there constraints on the measure of effect we may
compute from a case-control study? Why should we
compute the exposure odds ratio rather than the
exposure probability ratio or the exposure probability
difference?
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The retrospective story is circular reasoning, telling us
that the case-control design is valid because it is a
valid design. No critical mind should have accepted it,
but that’s the prevailing “explanation” in many basic
courses and introductory textbooks of epidemiology.

The cohort story

The following text is an attempt to explain the case-
control study as a sample from a cohort.

“[The case-control study] employs an extra step of
sampling according to the outcome of individuals in
the population. This extra sampling step can make a
case-control study much more efficient than a cohort
study of the entire population...”* "#°7

The story, as quoted above, is not quite accurate,
however. Indeed, a case-control study may be viewed
as a sample from some cohort — real or theoretical —
which is based on disease status. But that cohort
doesn’t have to include an “entire population”
(whatever that foggy term means). The source cohort
in which a case-control study is nested may include
any specified group of people—say, pilots of
Singapore Airlines combined with left-handed
residents of Los Angeles who like cats.

Following this premise, simple math shows how the
exposure odds ratio may estimate the rate ratio, the
probability ratio, or the disease odds ratio—
depending on the method by which controls are
sampled.5 For example, when controls are sampled
from some cohort at baseline (the so-called case-
cohort design), the exposure odds ratio estimates the
probability ratio. When controls are sampled from
members of some cohort who remained disease-free
(the cumulative design), the exposure odds ratio
estimates the disease odds ratio.

All questions about the validity of a particular case-
control study turn into questions about the rules for
sampling (selecting) cases and controls from the
source cohort. Were they valid (unbiased)? And if not,
can validity be restored at the analysis stage? For
instance, matching controls to cases violates the
requirement to randomly sample controls from the
source cohort, but that violation may be rectified by
stratification on the matched variables, which is
equivalent to random sampling from each stratum of
the source cohort.

The diagram story

The diagram story does not allude to any extra
sampling step from a cohort study of some “entire

population”. The explanation is anchored in a causal
diagram.

Figure 1 shows the basic causal structure of a case-
control study: E is the exposure variable, D is the
disease variable, and S is selection status. As usual,
the effect of interest is E->D.

Figure 1. A basic causal diagram for a case-control
study
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Disease status affects selection status because
diseased people are over-sampled into a case-control
study as compared with their disease-free
counterparts. The box around S denotes conditioning,
which here means restriction to one value of S. We
always condition on selection status—not only in a
case-control designs—because a study is obviously
conducted only in the selected people. Following
conditioning on S, the arrow D->S no longer
contributes to any association (denoted by two lines
over that arrow). In particular, D and S are
dissociated.

Figure 1, however, does not tell the whole story.
Several subtleties are revealed in the next series of
diagrams.

Figure 2 shows that the arrow from D to S contributes
to two causal paths: E>D->S and D—>S. With this
layout, it becomes clear that £ and D collide at S, just
like any two variables that share an effect. Since E
collides through the same path as D, the structure is
called uni-path coIIiding.7 (Bi-path colliding describes
the colliding of two causes through different paths.)

Figure 2. A different perspective of the causal
diagram for a case-control study

In many circumstances, conditioning on a collider will
result in colliding bias by adding a new, unwanted
component to the association between the colliding
variables.” That’s true for uni-path colliding as well.
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Specifically, if we try to estimate the effect E>D from
a case-control study by most measures of association
(e.g., the disease probability ratio) the estimator will
contain colliding bias. The bias component is shown
by a dashed line between E and D (Figure 3).

Figure 3. Colliding bias in a case-control study when
estimating the disease probability ratio
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Collapsing back to the layout of a single path, Figure 4
depicts the structure of uni-path colliding bias in a
case-control study.

Figure 4. Colliding bias in a case-control study when
estimating the disease probability ratio
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Why does the bias arise?

Uni-path colliding bias arises because we alter the
distribution of the effect variable, S, which would
necessarily alter the distribution of its cause, D:
Pr(D|S=1) # Pr(D). Rare exceptions aside, if the
probability distribution of D no longer arose from its
causes alone, the conditional association between D
and E does not reflect the effect ED; bias must be
present. Formally, the bias in the probability ratio
may be written as follows:

Pr(D=1|5=1, E=1) / Pr(D=1|5=1, E=0) #
Pr(D=1|E=1) / Pr(D=1|E=0)

The proof of the inequality is given in Appendix A. The
multiplier that restores equality is called “the bias

factor”.

Pr(D=1|S=1, E=1) / Pr(D=1|5=1, E=0) =
Pr(D=1|E=1) / Pr(D=1| E=0) x bias factor

There is, however, at least one exception to the rule:

A measure of association between E and D that is
indifferent to the direction of the arrow between the

two variables will not be affected by conditioning on
S. Specifically, uni-path colliding bias will not arise
when the effect is estimated by an odds ratio.

A formal proof is given in Appendix B, but we may
also get an intuitive explanation. Consider the
following pair of diagrams (Figure 5), the top of which
depicts a case-control study.

Figure 5. Two causal structures
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If the arrow between E and D is reversed (Figure 5,
bottom diagram), conditioning on S will still alter the
distribution of D, but no bias will be added when
estimating the effect E€D. In causal inquiry the
distribution of the cause of interest (here, D) may be
altered with no penalty in the department of bias. For
instance, exposed people are often over-sampled for
an occupational cohort study.

If a measure of association is indifferent to the
direction of the arrow between E and D, there is no
difference between estimating the effect E>D
(Figure 5, top diagram) and estimating the effect
E<D (Figure 5, bottom diagram). The effect size is
identical, which implies that the two diagrams are
interchangeable. Since bias is absent from the bottom
diagram, it must also be absent from the top
diagram—for such a measure of association.

The odds ratio meets this condition. Whether E->D or
D->E, the odds ratio is identical. Therefore, uni-path
colliding bias is absent from a case-control study, so
long as we estimate the effect by an odds ratio
(Figure 6). Technically, that number may be called
either the exposure odds ratio, or the case-ness odds
ratio, or the disease odds ratio. Scientifically, only the
latter term is meaningful. Moreover, the diagram
story reveals that we may stop teaching students
about the need to compute the exposure odds ratio
from a case-control study. As far as uni-path colliding
bias is concerned, the ratio of the odds of being a
case in exposed to the odds of being a case in
unexposed is an unbiased disease odds ratio.

Figure 6. No colliding bias in a case-control study
when estimating the disease odds ratio
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On the rare disease assumption

For reasons of efficiency and effort, a case-control
study is preferred to a cohort study whenever the
disease is rare. But for many years we have also heard
that case-control studies must be confined to rare
diseases. Is there any grain of truth in that claim?

The answer is neither simple nor short.

No matter how controls are sampled, we always
compute an odds ratio. In the cumulative design, that
odds ratio is the disease odds ratio, and neither the
cohort story nor the diagram story calls for any “rare
disease assumption”. Other methods of control
selection—case-cohort sampling or incidence density
sampling—allow the odds ratio to estimate the
probability ratio or the rate ratio, but no rare disease
assumption is invoked, either.’

The assumption is needed only in the following
situation: we use the classic, cumulative design and
claim to have estimated the probability ratio. If the
disease is rare in exposed and unexposed (say,
frequency<0.15), the disease odds ratio and the
disease probability ratio are approximately equal.
(That approximation stems from similarity between
the odds and the probability of a rare event—e.g.,
0.1/0.9=0.1).

But why might anyone want to claim that the disease
odds ratio from the cumulative design estimate the
disease probability ratio?

Well, most people hold the view that the probability
ratio is the “correct” measure of effect, whereas the
odds ratio is an aberrant measure that was forced
upon us in the case-control design. (They also equate
“risk” with “probability” and “relative risk” with
“probability ratio”.) Only a handful of authors,
however, have written quasi-reasoning for that
viewpoint, and the fundamental question of which
measure of effect is preferred, if any, awaits a solid
analysis. At any rate, all those who cannot tolerate
the disease odds ratio—rightly or wrongly—must
invoke the rare disease assumption for the classic,
cumulative case-control design. Still, the assumption
is never needed in case-cohort sampling or in
incidence density sampling.
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Appendix A

The proof is based on the idea of conditional
probability: Pr(4|B) = Pr(4, B)/Pr(B)

Pr(D=1S=1E=e¢)
Pr(S=1,E =e)

Pr(D=1|S=1,E=¢e) =

B Pr(S=1D=1E=e)XPr(D=1E=¢e)
B Pr(S=1|E =e) x Pr(E = e)

_Pr(5=1|D=1,E=e)><Pr(D=1|E=e)><Pr(E=e)

Pr(S=1|E =e) XPr(E =e)

Given the structure E-»D->S, the variables S and E
are independent, conditional on D. Omitting E=e from
Pr(S=1|D=1, E=e) and noting the cancellation of
Pr(E=e), we get:

_Pr(S=1D=1)xPr(D=1|E =e)
B Pr(S=1|E =e)

For E=1, we write:

Pr(S=1D=1)xPr(D = 1|E = 1)
Pr(S=1|E = 1)

and for E=0, we write:

Pr(S=1|D =1) x Pr(D = 1| E = 0)
Pr(S = 1|E = 0)
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Therefore, following conditioning on S, we estimate Pr(D =1|E =1) /Pr(D = 1|E = 0)
the effect E->D by the following probability ratio: Pr(D =0|E =1)/ Pr(D =0|E =0)
Pr(S=1D=1)xPr(D=1|E=1)/Pr(S=1]E=1) = 0dds(D = 1|E = 1) /0dds(D = 1|E = 0)

Pr(S=1|D=1) X Pr(D = 1| E = 0)/Pr(S = 1|E = 0)
which is the odds ratio for effect of £ on D.

Conditioning on S did not add bias.
_ Pr(S=1D=1)XxPr(D=1E =1) X Pr(S=1|E = 0)
T Pr(S=1D=1)xPr(D=1E=0)xPr(S=1|E = 1)

_Pr(D=1E=1) Pr(S=1|E = 1)1*
T Pr(D=1]E =0) Pr(S = 1|E = 0)

To summarize:

Pr(D=1|S=1,E=1)
Pr(D=1|S=1,E = 0)

_P@=1E=1)  [Pr(S=1E=1) -1
" Pr(D = 1|E = 0) Pr(S=1|E = 0)

The probability ratio Pr(D=1|E=1) / Pr(D=1|E=0)]
quantifies the effect E->D, under the structure
E>D->S. The expression in boldface may be called
the bias factor due to conditioning on S. Notice that
the bias factor quantifies the effect of Eon S, and if £
has a null effect on S (because E->D is null),
conditioning on S does not add bias.

Appendix B

0dds(D =1|S=1,E = e)
_Pr(D=1S=1E=e)

T Pr(D=0|S=1,E=¢e)

Based on Appendix A, we may substitute:

_Pr(§=1|D=1) x Pr(D =1|E =¢)/Pr(S =1|E = e)
" Pr(S=1D=0) x Pr(D =0|E = e)/Pr(S = 1|E = e)

_Pr(S=1|D=1) x Pr(D = 1|E = ¢)
" Pr(S=1D=0) x Pr(D =0|E =¢)

For E=1, we write

Pr(S=1|D=1) x Pr(D =1|E = 1)
Pr(S=1|D=0) x Pr(D = 0E = 1)

and for E=0, we write:

Pr(S=1/D =1) X Pr(D = 1|E = 0)
Pr(S=1|D = 0) X Pr(D = 0|E = 0)

The ratio of these two odds (the odds ratio) is
reduced to the following:



